777 12th Street, Third Floor

SACRAMENTO METROPOLITAN

Sacramento, CA 95814

BEST AVAILABLE CONTROL TECHNOLOGY & TOXIC BEST AVAILABLE CONTROL TECHNOLOGY DETERMINATION

	DETERMINATION NO.:	133
	DATE:	July 12 , 2016
	ENGINEER:	Venk Reddy
Category/General Equip Description:	Human Crematory	
Equipment Specific Description:	Human Crematory	
Equipment Size/Rating:	Minor Source BACT	
Previous BACT Det. No.:	74	

This BACT determination will update determination # 74 for a Human crematory

This BACT was determined under the project for A/C 24785 (North Sacramento Funeral Home).

BACT ANALYSIS

A: ACHIEVED IN PRACTICE (Rule 202, §205.1a)

The following control technologies are currently employed as BACT for human crematories.

BACT & T-BACT Determination Human Crematory July 12, 2016 Page 2 of 11

District/ Agency	Best Available Control Technology (BACT) Requirements			
	BACT Source: EPA/ RACT/BACT/LEAR Clearinghouse			
	VOC	No Standard		
	NOx	No Standard		
	SOx No Standard			
US EPA	PM10	No Standard		
	PM2.5	No Standard		
	CO	No Standard		
	Rule Rec None	<u>uirements</u>		

District/ Agency	Best Available Control Technology (BACT)/ Requirements			
BACT Source: ARB BACT Clearinghouse Crematory				
	VOC	No Standard		
	NOx	No Standard		
	SOx	No Standard		
ARB	PM10	No Standard		
AKD	PM2.5	No Standard		
	CO	No Standard		
	<u>Rule Req</u> None	<u>uirements</u>		

District/ Agency	Best Available Control Technology (BACT)/ Requirements			
BACT From SMAQMD BACT #74 issued on 10/22/13				
VOC No Standard, Natural gas-fired with secondary chamb at >1600 °F.				
	NOx	No Standard, Natural Gas Fired		
	SOx	No Standard, Natural Gas Fired		
SMAQMD	PM10	No Standard, Natural gas-fired with secondary chamber operating at >1600 °F		
	PM2.5	No Standard		
	CO	No Standard		
Rule Requirements None				

District/ Agency	Best Ava	ilable Control Technology (BACT)/ Requirements		
	BACT			
	From SC	CAQMD BACT Guidelines for Non Major Polluting Facilities, Page 36		
	VOC	No Standard Natural Coo, Cocondary Chamber > 4500.05		
	VOC NOx	No Standard, Natural Gas, Secondary Chamber ≥ 1500 °F		
	SOx	No Standard, Natural Gas No Standard, Natural Gas		
	30%	No Stanuaru, Naturar Gas		
	PM10 No Standard, Natural Gas, Secondary Chamber ≥ 1500 °F			
	PM2.5 No Standard			
South Coast	CO No Standard			
AQMD				
		uirements 7 Nov Daductions from Missellansous Courses - Now Cromotorios		
	-	$\frac{7}{2}$ NOx Reductions from Miscellaneous Sources – New Crematories		
	fired at greater than 1200 °F cannot exceed 60 ppm at 3% O2 or 0.073 lb/mmBTU, Per Table 1 of this rule. A phone call to SCAQMD (Derek			
	Hollinshead, 909-396-2275), permitting department confirmed that the NOx			
	standard is for the burner operation only and not the cremation process.			
	standard to for the sumer operation only and not the elemator process.			

District/ Agency	Best Available Control Technology (BACT)/ Requirements			
	BACT From SE	DCAPCD NSR Requirements for BACT		
	VOC	No Standard		
	NOx	No Standard		
	SOx	No Standard		
San Diego County APCD	PM10	No Standard		
	PM2.5	No Standard		
	CO	No Standard		
	<u>Rule Reg</u> None	uirements		

District/ Agency	Best Available Control Technology (BACT)/ Requirements			
	BACT			
	From BA	AQMD BACT Guideline – Crematory		
	VOC	No Standard, Secondary Combustion ≥ 1500 °F		
	NOx	No Standard, Natural Gas Fired		
	SOx	No Standard, Natural Gas Fired		
Bay Area	PM10	No Standard, Secondary Combustion ≥ 1600 °F (set Point at 1650 °F)		
AQMD	PM2.5	No Standard		
	CO	No Standard, Secondary Chamber ≥ 1500 °F		
	<u>Rule Reg</u> None	uirements		

District/ Agency	Best Available Control Technology (BACT)/ Requirements				
	BACT				
	From SJ	IVAPCD BACT Guidelines – Crematory – Natural Gas Fired			
	VOC	No Standard, Natural gas fuel and a secondary combustion chamber (afterburner) \ge 1600 °F			
	NOx	No Standard, Natural Gas Fuel			
	SOx	No Standard, Natural Gas Fuel			
San Joaquin	PM10	No Standard, Natural gas fuel and a secondary combustion			
Valley APCD		chamber (afterburner) ≥ 1600 °F			
	PM2.5	No Standard			
	CO	No Standard			
	<u>Rule Req</u> None	uirements			

The following control technologies have been identified and are ranked based on stringency:

	SUMMARY OF ACHIEVED IN PRACTICE CONTROL TECHNOLOGIES			
VOC	No Standard			
	 Natural gas fuel and a secondary combustion chamber (afterburner) ≥ 1600 °F, SMAQMD, SJVUAPCD 			
	2)Natural gas fuel and a secondary combustion chamber (afterburner) ≥ 1500 °F, SMAQMD, BAAQMD			
NOx	60 ppm at 3% O2 or 0.073 lb/MMBTU measurement of the fuel burned only, SCAQMD			
SOx	No Standard, Natural Gas Fuel.			
PM10	No Standard,			
	 Natural gas-fired with secondary chamber operating at >1600 °F SMAQMD, 			
	SJVAPCD, BAAQMD			
	 Natural Gas, Secondary Chamber ≥ 1500 °F, SCAQMD 			
PM2.5	5 No Standard			
CO	No Standard, Secondary Chamber ≥ 1500 °F, BAAQMD			

The following control technologies have been identified as the most stringent, achieved in practice control technologies:

	BEST CONTROL TECHNOLOGIES ACHIEVED				
Pollutant	Standard	Source			
VOC	No Standard, Natural gas fuel and a secondary combustion chamber (afterburner) ≥ 1600 °F	SMAQMD, SJVUAPCD			
NOx	60 ppm at 3% O2 or 0.073 lb/MMBTU	SCAQMD			
SOx	No Standard, Natural Gas Fired	SCAQMD, SMAQMD, BAAQMD, SJVAPCD			
PM10	No Standard, Natural gas-fired with secondary chamber operating at >1600 °F	SMAQMD, SJVAPCD, BAAQMD			
PM2.5	No Standard				
CO	No Standard, Secondary Chamber ≥ 1500 °F	BAAQMD			

B. TECHNOLOGICALLY FEASIBLE AND COST EFFECTIVE (Rule 202, §205.1.b.):

Technologically Feasible Alternatives:

Any alternative basic equipment, fuel, process, emission control device or technique, singly or in combination, determined to be technologically feasible and cost effective by the Air Pollution Control Officer.

Updated in 2005, the SJVAPCD lists the use of a baghouse with a dry scrubber or a wet scrubber as technologically feasible for the control of SOx, the use of a venturi scrubber for the control of PM10 and the use of an SCR or a low NOx burner for the control of NOx. The control strategies appear to be carryovers from other natural gas combustion operations and do not appear to be fully evaluated for a crematory. The BAAQMD evaluated the same source category in 2007 and do not list a baghouse, venturi scrubber, the use of an SCR or a low NOx burner as technologically feasible options. No other district lists these options as technologically feasible either. Additionally SMAQMD contacted SJVAPCD (Manuel Salinas, 559-230-5833) and verified that an SCR, low NOx burner, baghouse or scrubber has not been installed on any crematories to date. Irrespective of the discussion above that questions San Joaquin's intent for listing add on controls as being technologically feasible for a crematory application, the following analysis will assume that add on controls are technologically feasible and a cost effectiveness determination needs to be conducted to determine if add on controls are in fact considered cost effective.

NOx:

A cost effectiveness analysis was done to determine if an SCR system could be considered cost effective to control the NOx from a crematory and is calculated in Appendix A of this document. The crematory is estimated to have a burner that when fired only on natural gas with no body will emit NOx at less than 60 PPM. To estimate the NOx emissions attributed to the burning of the charge, AP-42 Chapter 2.3 - Medical Waste Incineration Table 2.3-1 was used. This value for NOx is 3.56 lb of NOx per ton of charge. As a worst case assumption, and consistent with the crematory permitting manual of the BAAQMD, the NOx emission factor that is used in this analysis will be the combined emission factor of 5.31 lb of NOx/ton of charge

BACT & T-BACT Determination Human Crematory July 12, 2016 Page 7 of 11

which includes the emission factor of natural gas combustion added to the emission factor from burning of the charge.

With a burn rate of 225 lbs per hour, and operation occurring 12 hours per day, 6 days per week, and 52 weeks per year, the total charge would be 421 tons per year. With an SCR NOx control efficiency of 90%, the NOx emissions from the crematory is calculated to be 0.1 tons per year (421*5.31*(1-0.9)/2000=0.1).

A cost for a SCR system was estimated using EPA's Cost Control Manual, 6th Edition. The SCR sizing criteria for which the costs are based are primarily determined from the exhaust flow rate and temperature. The spreadsheet that was used determines the flow rate from the burner rating. However, a crematory unit's flow rate is much larger than the flow rate estimated from the burner rating alone as it is dependent on exhaust generated from natural gas combustion, exhaust generated from the charge itself, and additional excess air. As a result, the analysis will utilize the actual average flow rate observed during source testing of two identical crematory units and a calculated equivalent burner rating.

The total annualized cost for the SCR system is estimated to be 49,295.46. The total NOx controlled would be 1.01 tons per year (421*5.31*0.9/2000 = 1.01). The analysis shows the cost effectiveness calculation to be 48,997.36 per ton of NOx reduced. Since the District's cost effectiveness threshold for NOx is 24,500 per ton, the addition of the SCR would not be considered cost effective.

Total Annualized Cost of SCR		Cost of SCR per ton removed	SMAQMD cost effective threshold for NOx	Cost effective
\$49,295.46	1.01	\$48,997.36	\$24,500	No

PM:

A screening cost effectiveness analysis was done to determine if a baghouse could be considered cost effective to control the particulate from a crematory. Based on source testing of a similar crematory unit, only about 23% of the total particulate collected is filterable. Therefore, this analysis will assume that the baghouse will collect 100% of the filterable emissions which would be approximately 0.06348 tons/yr. With the District's particulate cost effectiveness threshold of \$11,400/ton, interest rate of 5% and an equipment life of 10 years, the capital cost for the control would have to be less than \$5,588 to be considered cost effective.

Based on EPA's Cost Control Manual, 6th Edition, the capital cost of a baghouse needed to control the flow characteristics of a crematory is estimated to be approximately \$21,499.74. Since the capital costs of a baghouse alone are approximately 4 times higher than the capital costs needed to be considered cost effective, the baghouse will not be considered cost effective. The analysis above only considers the amortized capital costs of the control device and no other annualized costs (such as maintenance, energy, etc.) were included. Inclusion of these other annualized costs would only drive the cost effectiveness higher.

BACT & T-BACT Determination Human Crematory July 12, 2016 Page 8 of 11

Therefore, the conclusion is that a baghouse used to control particulate matter for a crematory is not considered cost effective and as such will not be considered BACT. See Appendix A for cost analysis.

Total Annualized Cost of a Baghouse	Quantity of PM10 Controlled (TPY)	Cost of a Baghouse per ton removed	SMAQMD cost effective threshold for PM10	Cost effective
\$2,784.31	0.063	\$43,861.29	\$11,400	No

A screening cost effective analysis was done for a venturi scrubber using the EPA Cost Control Manual, 6th Edition. Unlike the baghouse discussion above, the entire PM quantity (filterable and condensable) was used for cost effectiveness determination, as opposed to only the filterable fraction of PM for the baghouse. The lowest cost option was considered when making the determination of costs. A venturi scrubber system sized to control 3337 cfm of exhaust gas is estimated to cost \$82,572 which only takes into account the equipment costs. The cost effectiveness for this system would then be \$38,745 per ton of PM controlled. Since the system costs are greater than the District's cost effectiveness criteria, a venturi scrubber is not considered cost effective.

Total Annualized Cost of Venturi Scrubber	Quantity of PM10 Controlled (TPY)	Cost of Venturi per ton removed	SMAQMD cost effective threshold for PM10	Cost effective
\$10,693.48	0.276	\$38,744.51	\$11,400	No

SOx:

A cost effectiveness analysis was done for the control of SOx with the use of a wet scrubber. Based on the information presented in the EPA Cost Control Manual, 6th Edition, the cost of the capital equipment was selected by using the lowest surface area and subsequent cost information available in this section of the manual. For SOx, the District's cost effectiveness threshold is \$18,300 per ton. The cost of the wet scrubber was estimated to have a total annual cost of \$27,308 and control efficiency was assumed to be 100%. The cost of the electricity, or caustic was not considered. The total SOx emissions controlled is 0.46 tons/year. The cost per ton removed for this control was calculated to be \$59,365.10 and therefore is not considered to be cost effective.

Total	Quantity of SOx	Cost of wet	SMAQMD cost	Cost effective
Annualized Cost	Controlled per yr	scrubber per ton	effective	
of Wet Scrubber		removed	threshold for Sox	
\$27,307.95	0.46 tons	\$59,365.10	\$18,300	No

The EPA Cost Control Manual, 6th Edition does not have a chapter on dry scrubbers. A dry scrubber consists of a dry reactant or powder injection system and a baghouse. Costs for a dry scrubber are estimated using the equipment costs of a baghouse plus the annual operating

BACT & T-BACT Determination Human Crematory July 12, 2016 Page 9 of 11

costs of a wet scrubber. Since the reference manual does not have cost information for the powder injection system, the cost of electricity, powder reactant and the powder injection system was not considered in this analysis. The total annualized costs are estimated to be \$23.265.11. The cost per ton of SOx removed is calculated to be \$50,576.33 and therefore is not considered to be cost effective.

Total Annualized Cost of dry scrubber	Quantity of SOx Controlled (TPY)	Cost of dry scrubber per ton removed	SMAQMD cost effective threshold for SOx	Cost effective
\$23,265.11	0.46	\$50,576.33	\$18,300	No

PM + SOx:

Per the SMAQMD Procedures for Making Best Available Control Technology (BACT) and Best Available Control Technology for Toxic (T-BACT) Determinations for New and Modified Emission Units (10/15), when a control technology is expected to control multiple forms of criteria pollutants both shall be assessed for cost effectiveness. In the case of a wet scrubber, the control of SOx, and PM10 should be considered. Per the calculation method found in the document, and assuming that 100% of PM10 and SOx is removed by the wet scrubber

Max Cost = \sum (Emissions Reduced * Cost Effectiveness Value) P = Each pollutant subject to BACT

Max Cost = (0.276 ton PM10/yr X \$11,400/ton PM) + (0.46 ton SOx/yr X \$18,300/ ton SOx) = \$11,564.40/ yr

Since the annualized costs of a wet scrubber or a dry scrubber with baghouse is \$27,307.95 and/or \$23,265.11 respectively and since either is greater than the Max Cost value calculated above the use of a wet scrubber or dry scrubber with baghouse is not considered cost effective.

APC Device	Total Annualized Cost	Quantity of SOx & PM10 Controlled per yr	Aggregate Max Cost Threshold for SOx & PM10	Cost effective
Wet Scrubber	\$27,307.95	0.46 tons SOx 0.276 tons PM10	\$11,564.40	No
Dry Scrubber with Baghouse	\$23,265.11	0.46 tons SOx 0.276 tons PM10	\$11,564.40	No

BACT & T-BACT Determination Human Crematory July 12, 2016 Page 10 of 11

C. SELECTION OF BACT:

No technologically feasible control technologies were found to be cost effective and therefore not selected. BACT will be standards that have been achieved in practice.

BACT For A Human Crematory					
Pollutant	Standard	Source			
VOC	No Standard, Natural gas fuel and a secondary combustion chamber (afterburner) => 1600 °F	SMAQMD, SJVUAPCD			
NOx	60 ppm at 3% O2 or 0.073 lb/MMBTU, measured as emissions from the fuel burning, not with the charge.	SCAQMD			
SOx	No Standard, Natural Gas Fired	SCAQMD, SMAQMD, BAAQMD, SJVAPCD			
PM10	No Standard, Natural gas-fired with secondary chamber operating at >1600 °F	SMAQMD, SJVAPCD, BAAQMD			
PM2.5	No Standard				
CO	No Standard, Secondary Chamber => 1500 °F	BAAQMD			

D. SELECTION OF T-BACT:

There are no Federal NSPS's, NESHAP's nor State ATCM's for this source category. None of the sources surveyed have any toxic T-BACT determinations published. The District contacted the SCAQMD, the BAAQMD and the SJVAPCD to enquire about any T-BACT determinations that may not have been published for this source category. In all cases, the T-BACT determinations were essentially the crematory's operational parameters that have been required as BACT. Therefore, T-BACT standards will be considered as meeting the BACT standards identified above.

REVIEWED BY:		DATE:	
APPROVED BY:	Jackeljugun	DATE:	7/12/16

BACT & T-BACT Determination Human Crematory July 12, 2016 Page 11 of 11

Appendix A Cost Analysis

SCR COST EFFECTIVENESS CALCULATION EPA AIR POLLUTION CONTROL COST MANUAL, Sixth Edition, EPA/452/B-02-001, January 2002 Section 4.2 - NOx Post-Combustion, Chapter 2 - Selective Catalytic Reduction

Cost Effectiveness =	\$ 48	3,997.36	\$/ton
Equipment			
Crematory rating		5.914481559	mmBTU/hr
Crematory Operating hours			hours
Crematory capacity factor		1	
SCR Operating Days			days
Total Capacity Factor		0.854794521	
Baseline Nox (225 lb/hr burn rate, 3.56 lb/ton of charge*, 1.8 MMBTU/hr)			
*Nox emission Rate from AP-42 Table 2.3-1 Medical waste			
incineration		2.23E-01	lb/mmBTU
SCR Nox (90% control)			lb/mmBTU
Ammonia Slip		10	ppm
Ammonia Stochiometric Ratio		1.05	
Stored Ammonia Conc		29	%
Amonnia Storage days			days
Sulfur Content		0.005	
Pressure drop for SCR Ductwork			inches W.G.
Pressure drop for each Catalyst Layer		1 1297.783333	inche W.G.
Femperature at SCR Inlet Cost year		1297.783333	
Equipment Life			years
Annual interest Rate			%
Catalyst cost, Initial			\$/ft2
Catalyst cost, replacement			\$/ft2
Electrical Power cost			\$/KWh
Ammonia Cost		0.101	
Catalyst Life		24000	hr
Catalyst Layers	2 full, 1 ei	mpty	
Crematory Calculations			
Q _B		5.914481559	mmBTU/hr
q _{flue gas}		3337.4	acfm
N _{NOx}		0.9	
SCR Reactor Calculations			
Vol _{Catalyst}		134.1927791	ft3
		3.476458333	
ACatalyst		3.997927083	
A _{SCR} =w=		1.999481704	
		1.999481704	ii.
n _{layer}			
h _{layer}		4.216702322	
n _{total} h _{SCR}		13 154.8171302	#
"SCR		154.8171502	ii.
Reagent Calculations			
m _{reagent}		0.51144438	
m _{sol}		1.763601312	lb/hr
9 _{sol}		0.23559824	gph
Fank Volume		508.8921974	gal
Cost Estimation			
Direct Costs			
	\$	219,976.07	
Indirect Costs			
General Facilites	\$	10,998.80	
Engineering and home office fees	\$	21,997.61	
Process Contingency	\$	10,998.80	
Total Indirect Installation Costs	\$	43,995.21	
Project Contingency Fotal Plant Cost	\$ \$	39,595.69 303,566.98	
Preproduction Cost	\$ \$	303,566.98 6,071.34	
Inventory Capital	\$	384.75	
Fotal Capital Investment	\$	310,023.07	
Direct Annual Costs			
Maintenance Costs	\$	4,650.35	per vr
Power	ب	4,650.35	
Annual Electricity	\$	1,906.64	
Reagent Solution Cost	\$	1,560.36	
Catalyst Replacement			
FWF	,	0.317208565	
Annual Catalyst Replacement	\$	1,028.70	per yr
Total Variable Direct Cost	\$	4,495.71	per yr
Total Direct Annual Cost	\$	9,146.06	
CRF		0.129504575	
cRF ndirect Annual Cost	¢		porter
Fotal annual Cost	\$ \$	40,149.41 49,295.46	
	~	,	1.
NOx Removed		1.01	tons per yea
Cost of Nox controlled per ton removal	\$	48,997.36	per ton

Buffalo Crem	ation	Lit	fenlan Cren	nations		
9/18/2008		1	/1/2011		A	VE
1316	1241	1193	1336.8	1366.3	1333.6 1	1297.783
3904.7	3445.7	3734	2954	2976	3010	3337.4

3.5	6 NOX lb/ton(A) (A) - Table 2.3-1 AP-42	225 lb/hr (B)
	2.3 Medical Waste Incineration	(B) Burn rate of the crematory
1.7	5 Nox lb/ton (C)	
	(C) - Natural gas comb	ustion at 60 ppm
5.3	1 Combined Nox lb/ton	
	lb of Nox based on	
tons of charge based on 12 hrs a day 6 days a week 52 weeks a	3.56 lb of Nox/ ton of	
year and burn rate of crematory	charge	LB of Nox controlled based on 90%
421 tons	1.12 tons	1.01 tons

PM10 Baghouse Cost Effective Requirements PM Cost effective Number	11400 \$/ton	
PM emission from Crematory 23% of PM is filterable Cost needed to be cost effective CRF (5% interest and 10 year life) P (Cost of control need to be cost effective)	0.06348 tons/yer \$ 723.67 \$ 0.12950457 5588.00336	Total PM = 0.276 ton/year
Particulate Matter Control (B	ag House) Cost Analysis	
Gas to cloth ratio for shaker or reverse air bag house	1.8	
A	9	
В	0.8	
	0.1	
D (mass mean diameter of particle, 7 um guess)	7	
V	4.95892838 equation 1.11	
acfm of system	3337 acfm	
Bag Size	672.927646 ft^2	
Cost of Bag house common housing design	\$ 7,127.18 \$	
Cost of insulation	\$ 2,541.63 \$	
Cost of BAG Nextel, bottom bag removal	\$ 11,217.70 high Temp Bags	
Bag house cages	\$ 50.14	
cage cost	\$ 12.23 \$/cage	
Total cage costs	\$ 613.23 \$	
Purchased equipment costs	\$ 21,499.74 \$	
Annualized Cost	\$ 2,784.31	
Cost effectiveness	\$ 43,861.29 \$/Ton controlled	k

PM10 Venturi Cost Effecive Analysis			
Total PM	0.276 Tons/year		
PM Cost effectiveness	11400 \$/tons controlled		
CRF (5% interest and 10 year life)	0.1295046		
From Table 2.8 Direct and Indirect Installation Co	sts for Venturi Scrubbers, EPA Contr	ol Cost Manual 6t	h edition, 1-02
Ventur Packaged Unit (A1)	\$14,098.43 150*Q(sat)^0.56	3337 acfm	low energy cabon steel
Additional Equipement (A2)	\$11,278.74 80% of Unit		
Durchard Factorian Court DEC			
Purchase Equipment Cost, PEC	\$29,945.06 1.18*(A1+A2)		
Direct Installation Costs, DC	\$16,769.24 0.56*PEC		
Total Indirect Costs, IC	\$10,480.77 0.35*PEC		
Total	\$82,572.25		
Total Annualized Cost	\$10,693.48		
	Ŷ±0,055.40		
Cost Effectiveness	\$38,744.51 \$/Ton Controlled		

Cost Effective Requirement	s SC		
SOx Cost effective Number		18300	
SOx emissions	~		tons/yer 0.46
CRF (5% interest and 10 year life)	0	.129504575	
SOx Control (Bag House	e) C	ost Analysis	
Gas to cloth ratio for shaker or reverse air bag house		1.8	
A		9	
В		0.8	
L		0.1	
D (mass mean diameter of particle, 7 um guess)		7	
v	4	.958928378	equation 1.11
acfm of system	-		acfm
Bag Size		672.927646	
Cost of Bag house common housing design	7	127.180728	Ś
Cost of insulation		541.628651	
Cost of BAG Nextel, bottom bag removal			high Temp Bags
Bag house cages		0.14363979	
cage cost		2.22944239	\$/cage
Total cage costs		613.228754	
Purchased equipment costs	2	1499.74199	\$
DC			
Operating Labor	\$	3 <i>,</i> 659.76	(.5 hr/shift) (1 shift/8 hrs)(3,744 hrs/yr)*\$15.64
Supervisor	\$	548.96	15% of operating Labor
Maintenance Labor	\$	4,027.14	(.5 hr/shift) (1 shift/8 hrs)(3,744 hrs/yr)*\$17.21
Material	\$		100% of maintenance labor
Electricity			
IC			
Overhead	\$	7,357.80	60% of total labor and material
Admin charges	\$	429.99	
Property Tax	\$	215.00	
Insurance	\$	215.00	
Total annualized costs	Ś	23,265.11	
	Ŧ	-,	
TAC/tons controlled	Ś	50,576.33	
-, /	7		

SOx Cost effective Number		18300	\$/ton	
SOx emissions		0.46	tons/yer	
CRF (5% interest and 10 year life)	0	.129504575		
S Total Capital Investment	Ox Control (Packed Tower)	Cost Analy	sis	Figure 1.4 pg 1-27, Setion 5.2 Post Combstion Controls, Chapter 1 Wet Scrubbers for Acid Gas
				Equation 1.40 pg 1-24, Setion
Tourse Cost	¢	7 025 00	C0 #42	5.2 Post Combstion Controls, Chapter 1 Wet Scrubbers for
Tower Cost	\$	7,935.00	69 ft^2	Acid Gas
Packing Costs	\$	207.00		
AUX Eq (fan & Pump)	\$	4,071.00	1/2 the tower costs Guess	
PEC	-	14,411.34		
DC		22,594.05		
IC	\$	4,274.55		
TCI	\$	41,279.94		
				Table 1.4, pg 1-28, Setion 5.2 Post Combstion Controls, Chapter 1 Wet Scrubbers for
Direct Annual Costs	A	2 650 76		Acid Gas
Operating Labor	\$ \$		(.5 hr/shift) (1 shift/8 hrs)(3,744	nrs/yr)*\$15.64
Supervisor Solvent (water)	\$	690.00	15% of operating Labor	
Caustic replacement	Ŷ	050.00		
Watewater disposal				
Maintenance Labor	\$	4,027.14	(.5 hr/shift) (1 shift/8 hrs)(3,744	hrs/yr)*\$17.21
Material	\$		100% of maintenance labor	.,,,
Electricity				
Indirect Annual costs				
Overhead	\$	7,357.80	60% of total labor and material c	costs
Admin charges	\$	825.60		
Property Tax	\$	412.80		
Insurance	\$	412.80		
Total indirect annual costs	\$	21,962.00		
Total annual costs	\$	27,307.95		
TAC/Ton of Sox controlled	\$	59,365.10		

Cost Effective Requirements SOx Wet Scrubber